
Controlling Modelling Artifacts
Michael J.A. Smith, Flemming Nielson and Hanne Riis Nielson

Department of Informatics and Mathematical Modelling
Danmarks Tekniske Universitet

Lyngby, Denmark
Email: {mjas, nielson, riis}@imm.dtu.dk

Abstract—When analysing the performance of a complex
system, we typically build abstract models that are small enough
to analyse, but still capture the relevant details of the system. But
it is difficult to know whether the model accurately describes the
real system, or if its behaviour is due to modelling artifacts that
were inadvertently introduced.

In this paper, we propose a novel methodology to reason
about modelling artifacts, given a detailed model and a high-
level (more abstract) model of the same system. By a series of
automated abstraction steps, we lift the detailed model to the
same state space as the high-level model, so that they can be
directly compared. There are two key ideas in our approach — a
temporal abstraction, where we only look at the state of the system
at certain observable points in time, and a spatial abstraction,
where we project onto a smaller state space that summarises the
possible configurations of the system (for example, by counting
the number of components in a certain state).

We motivate our methodology with a case study of the
LMAC protocol for wireless sensor networks. In particular, we
investigate the accuracy of a recently proposed high-level model
of LMAC, and identify some modelling artifacts in the model.
Since we can apply our abstractions on-the-fly, while exploring
the state space of the detailed model, we can analyse larger
networks than are possible with existing techniques.

I. INTRODUCTION

Modelling is a tricky business. We build models because we
want to analyse systems that are too complicated to look at
directly, so that we can subject them to scenarios that might be
difficult to test in practice, and so that we can gain a greater
understanding of how they behave. It is precisely because these
systems are so complicated that we need to choose a level of
abstraction when modelling them — deciding which details
are relevant, and which we can ignore without having a large
impact on the results.

The problem here is that the more abstract our model is, the
more likely we are to introduce modelling artifacts. That is to
say, we make assumptions in the model that are not necessarily
true of the real system, and so the behaviour of the model
diverges from that of the real system. We make a trade-off, in
the sense that more abstract models are smaller and easier to
analyse, but may be less accurate than more detailed models.

The topic of this paper is concerned with a novel method-
ology to help us avoid introducing modelling artifacts, while
still gaining from the benefits of more abstract models —
namely, that we can analyse larger systems. Our approach
is to start with a detailed model, and to perform a series
of abstraction steps that allows us to build a more abstract
model. The novelty comes, in particular, from the way we

combine existing abstraction techniques to yield a powerful
new abstraction framework. This is an important contribution
in two ways:

1) If we have a detailed model and an abstract model
of the same system, it allows us to compare them,
so that we can reason about the modelling artifacts
that were introduced by the assumptions in the abstract
model. This is not to say that the detailed model is
itself free of modelling artifacts, but since it is closer
to the actual system, there are fewer opportunities for
modelling artifacts to arise.

2) Our methodology allows us to automatically build an
abstract model from a detailed model, so that we can
analyse larger systems than are possible with existing
techniques, without introducing any additional mod-
elling artifacts in the abstract model. Furthermore, we
have built an efficient implementation by performing the
abstraction on-the-fly.

The models we consider in this paper are probabilistic, and so
the questions we want to answer are, for example, of the form
“what is the probability that the system is in a state with a
certain property, after it has been running for a certain time?”

We begin the paper in Section II with a description of prob-
abilistic modelling techniques, using Discrete Time Markov
Chains (DTMCs), and higher-level modelling languages built
on top of this formalism. In particular, we will look at the
different approaches to building high-level (abstract) mod-
els and low-level (detailed) models, using the Lightweight
Medium Access Control (LMAC) protocol for wireless sensor
networks [15] as a running example.

We present our methodology in two stages. The first, which
we call temporal abstraction, is based on the idea that we
can only observe the state of the model at certain points in
time, and we describe this in Section III. In general, since
we consider time-abstract models, these ‘points in time’ are
defined in relation to one of the components in the model —
we only observe the state of the model when this component
changes its state. If we call this component a ‘clock’ (in an
abstract sense), this means that we can only observe the state
of the model when the clock ‘ticks’ (i.e. there is some global
agreement of time passing). The intermediate states between
these events are hidden from us. Importantly, we can shift our
temporal granularity by only sampling the state of the model
every t ‘ticks’.

The second stage in our methodology, described in Sec-
tion IV, is called spatial abstraction. The idea is that we
are only interested in certain derived properties of the model,
such as the number of components in a particular state,
rather than the particular state of every single component. We
can therefore summarise the configurations of the model by
projecting its states onto a more abstract state space. Because
we want to apply this methodology to models without any
obvious symmetry — such as a model of a network with a
non-uniform topology — this abstraction will typically result
in a Markov Decision Process (MDP) rather than a DTMC [6].
In other words, the abstraction introduces non-determinism,
or uncertainty, but it allows us to safely bound properties of
interest, such as the probability that a property holds within a
certain number of time steps.

Before concluding the paper, we present some results of ap-
plying our methodology to the LMAC protocol, in Section V.
This uses a tool that we have implemented, and allows us to
compare a detailed model of the protocol with a very abstract
model, based on combinatorial arguments, that was recently
proposed in [7]. In particular, we can identify some modelling
artifacts that were introduced in this model. Further to this,
we present some performance results for our tool, illustrating
that we are able to analyse much larger models than have
previously been possible, by building the abstract model on-
the-fly while exploring the state space of the detailed model.

II. HIGH- AND LOW-LEVEL MODELLING

The basic mathematical model that we use in this paper is
the Discrete Time Markov Chain, which is defined as:

Definition 1. A Discrete Time Markov Chain (DTMC) is a
tuple (S, P , ι), where S is a finite non-empty set of states,
P : S → S → [0, 1] associates a probability distribution over
the state space S to each s ∈ S, and ι ∈ S is the initial state.
We require for all s ∈ S that

∑
s′∈S P (s)(s′) = 1.

We will consider DTMCs with a structured state space, such
that S ⊆ V1 × · · · × Vn, where Vi are finite non-empty sets.

It is common to augment the above definition of a DTMC
with a labelling function L, which assigns a set of atomic
propositions to each state. This is so that we can refer to sets of
states when we specify properties of the model that we would
like to verify. An equivalent approach is to define each atomic
proposition a ∈ AP to be a function a : V1 × · · · × Vn → B,
which evaluates to true or false for each state in the model.

A popular logic for expressing properties of DTMCs is
Probabilistic Computation Tree Logic (PCTL) [10]. Since we
do not need PCTL in its entirety to present the ideas in
this paper, we will focus on just two important quantitative
properties of DTMCs — bounded and unbounded reachabil-
ity1. A bounded reachability property Prs(♦♦♦≤na) queries the
probability that, starting in state s, we reach a state t within
n steps such that a(t) holds. We can compute this iteratively

1These are technically not expressible in the logic of [10], but are imple-
mented (e.g. in PRISM), by means of a quantitative ‘P=?’ operator.

as follows, where n ∈ N0 is a non-negative integer.

Prs(♦♦♦≤na) =

0 if n = 0 ∧ ¬a(s)
1 if a(s)∑
t∈S

P (s)(t) · Prt(♦♦♦≤n−1a) otherwise

An unbounded reachability property Prs(♦♦♦a) relaxes the con-
straint on the number of steps. This can be computed by
solving a set of linear equations, or (as is more commonly
done in practice) by approximating the following limit:

Prs(♦♦♦a) = lim
n→∞

Prs(♦♦♦≤na)

We will make use of this in Section III when we compute
temporal abstractions.

When modelling a system using a DTMC, there are two
different approaches we can take. One approach is to directly
write down the state space S and probability transition matrix
P of the DTMC. Since we clearly do not want to specify each
state separately, we find a parametric way of describing the
model. That is to say, we have a structured state space, and
define the transitions from each state as a function of the state.
For this to be possible, there must be a lot of symmetry in the
DTMC we are describing, and so we typically view the system
at a fairly high level of abstraction. This can lead to models
that scale reasonably well, but we must be very careful about
introducing modelling artifacts.

The second approach, more commonly used by computer
scientists, is to specify the DTMC using a higher-level mod-
elling language. Here, we model the system in a compositional
way, describing the individual behaviour of each component
and composing them to build a model of the entire system. We
can automate the generation of a DTMC from the model, based
on the semantics of the modelling language. This typically
leads to more detailed models, which can become very large,
but are less likely to contain modelling artifacts.

The techniques we describe in this paper can be applied
to any compositional modelling language whose underlying
semantics is a DTMC, and where there is a notion of syn-
chronisation over actions. To apply our methodology to a real
case study, however, we need to instantiate it on a particular
language, and to this end we use the PRISM language [11].
A PRISM model consists of a number of modules, each con-
taining a number of variables, which can either be Boolean,
or take on integer values over a finite range. The evolution of
each module is described by guarded commands of the form:

[a] G → p1 : U1 + · · ·+ pn : Un ;

Here, a is an action type associated with the command, G is
a guard — an expression over the variables in the model —
and Ui are updates — changing the values of certain variables
to specify a new state. If G evaluates to true, then update Ui

is applied with probability pi (we require
∑

i pi = 1).
Since there may be more than one command enabled at the

same time (i.e. there are two guards that evaluate to true for
the same state), the semantics of a PRISM module in general
induces a Markov Decision Process (MDP).

Definition 2. A Markov Decision Process (MDP) is a tuple
(S,Act ,P , ι), where S is a finite non-empty set of states, Act
is a finite non-empty set of actions, P : S → Act → P(S →
[0, 1]) associates a finite set of distributions over the state
space S to each state and action, and ι ∈ S is the initial
state. We require for all s ∈ S and a ∈ Act that for all
π ∈ P (s)(a),

∑
s′∈S π(s′) = 1.

If we tell PRISM that a model represents a DTMC, it
resolves the non-determinism in the above by giving an
equal probability of choosing between concurrently-enabled
commands. It is useful for our purposes to remember the
action labels when we do this (we will make use of this in
Section III), and so we need to additionally define the notion
of a labelled DTMC:

Definition 3. A labelled DTMC is a tuple (S,Act ,P , ι),
where S is a finite non-empty set of states, Act is a finite
non-empty set of actions, P : S → Act → S → [0, 1]
associates a probability distribution over Act × S to each
s ∈ S, and ι ∈ S is the initial state. We require for all s ∈ S
that

∑
a∈Act

∑
s′∈S P (s)(a)(s′) = 1.

When PRISM treats a model as a DTMC, it induces a
labelled DTMC M = (S,Act ,P , ι) from an MDP M =
(S,Act ,P , ι) as follows:

P (s)(a)(s′) =

1

|P (s)|
∑

π∈P (s)(a)

π(s′) if |P (s)| > 0

1s=s′ otherwise

where we define |P (s)| =
∑

a∈Act |P (s)(a)|, and 1c is an
indicator value, equal to 1 if c is true, and to 0 otherwise. It is
straightforward to map a labelled DTMC M = (S,Act ,P , ι)
into a DTMC M ′ = (S, P ′, ι), by defining P ′(s)(s′) =∑

a∈Act P (s)(a)(s′). Note that this conversion is just a mod-
elling shorthand in PRISM, and we do not do this if the model
is intended to be an MDP.

We can compose MDPs (corresponding to PRISM modules)
by forcing them to synchronise over certain actions. For MDPs
M1 = (S1,Act ,P1, ι1) and M2 = (S2,Act ,P2, ι2) that
have the same actions, we can define the composed MDP as
M1‖A‖M2 = (S1×S2,Act ,P , (ι1, ι2)), for A ⊆ Act , where
P is defined as:

P (s1, s2)(a) =

 P1(s1)(a)⊗ P2(s)(a) if a ∈ A
P1(s1)(a)⊗ {πs2 } ∪
{πs1 } ⊗ P2(s2)(a) otherwise

where πs is the distribution defined as πs(s′) = 1s=s′ . We
define the operator ⊗ over sets:

P1(s1)(a)⊗ P2(s)(a) =
{π1 ⊗ π2 | π1 ∈ P1(s1)(a),π2 ∈ P2(s2)(a) }

and over distributions:

(π1 ⊗ π2)(s1, s2) = π1(s1) · π2(s2)

In PRISM, it is possible for the guards of one module to look
at the variables in another module — although in an update,

a module can only modify its own variables. This makes the
composition of modules slightly more complex than the above
(see [1]), but the above is sufficiently general for this paper.

A. The LMAC Protocol for Wireless Sensor Networks

As a running example for the methodology presented in
this paper, we take the Lightweight Medium Access Control
(LMAC) protocol for wireless sensor networks [15]. This is
a protocol designed for sensor networks where each node
has only a limited amount of power, and therefore a limited
communication range. When nodes are within range of one
another, only one can transmit at a time, otherwise their
transmissions will interfere (we call this a collision).

To avoid collisions, time is segmented into recurring time
frames, which each consist of t fixed-length time slots. This
is known as Time Division Multiple Access (TDMA). Each
node has ownership of a time slot, in which it can transmit
messages, but since we do not know the topology in advance,
we need a method for negotiating which node gets which time
slot. This is the purpose of the LMAC protocol, which uses
a distributed algorithm to achieve this goal. We will only de-
scribe the part of the protocol concerned with negotiating time
slots — routing messages across the network is straightforward
once the time slots have been correctly allocated.

A special node called the gateway node initiates the LMAC
protocol by selecting a time slot, and being the first to transmit
any messages. The basic idea is then to have three phases
of behaviour for the nodes in the network. When a node
receives its first message, it enters the scanning mode where
it listens over an entire time frame for any messages from its
neighbours. Each node must transmit a short control message
at the start of the time frame it owns (even if it has no
data to send), which allows scanning nodes to determine
which time slots are currently being used. Importantly, a node
cannot have the same time slot as any of its neighbours or its
neighbours’ neighbours, since the latter would imply that one
of its neighbours will detect a collision.

After the scanning mode, the node chooses one of the
available time slots, and enters the normal mode of operation.
There are two possibilities in this node, for each time slot. If
it does not own the time slot, it listens for any messages. If
it detects a collision (i.e. there is interference), it remembers
this, so that it can notify its neighbours. At the time slot that
the node owns, it sends a control message indicating the time
slots it knows are in use, and whether it detected a collision in
a time slot. Note that nodes cannot detect their own collisions,
since they cannot transmit and receive at the same time.

If a node gets notified of a collision in the time slot it owns,
it enters the back-off mode of operation. Here, it chooses a
number of time frames to wait (in our model, this is between
0 and 3 frames), before entering the scanning mode once again.

We have built a model of the LMAC protocol in PRISM,
parameterised by the topology of the network — we have a
tool that takes a topology description as input, and generates
the concrete PRISM model. The decisions of which time slot
to choose (when more than one is available), and how long to

Fig. 1. State machine of a node in the LMAC protocol

back-off for are made probabilistically, and these probabilities
are also parameters to the model. We model each node as a
PRISM module, which has a number of variables recording,
amongst other things, the state the node is in, which time
slot it owns, the time slots of its neighbours, and whether it
detected a collision. Figure 1 shows a state machine for a node,
indicating how it moves between different modes of operation.

Notice that there are three types of transition in the model.
Internal transitions (dotted arrows) are actions made by the
node independently of the rest of the network — they corre-
spond to internal decisions. Message-passing transitions (solid
arrows) are actions corresponding to sending or receiving a
message — the node (i.e. the PRISM module) synchronises
with all and only its neighbouring nodes whenever it sends
a message. Finally, Time-passing transitions (dashed arrows)
correspond to the whole network moving to the next time
slot, and all nodes must synchronise over these actions. The
LMAC protocol assumes that there is a globally synchronised
clock (i.e. framing is handled by a lower-level protocol), and
we model this as a separate module (t is a parameter to the
model — the number of time slots in a frame):

module Clock
now : [0..t− 1] init 0 ;
[tick] true → (now ′ = (now + 1) mod t)

endmodule

There is a link here with probabilistic timed automata [12],
but we explicitly model a clock as a component in the model,
rather than it being intrinsic to the modelling formalism.

The LMAC protocol was first formalised in [9], as a purely
qualitative model in UPPAAL (based on timed automata), to
verify whether the system eventually stabilises for a range of
different topologies. They were able to consider all topologies

up to five nodes, and their use of a clock in the UPPAAL
model corresponds to our explicit modelling of time using
a PRISM module. In [16] probabilities were added for the
back-off times, but not for the time slot selection, resulting
in an underlying semantics of a Markov Decision Process
(MDP) — we have gone the extra step of making the model
purely probabilistic.

More recently, a much higher-level model of the LMAC
protocol has been developed, using combinatorial arguments
to specify a DTMC for the evolution of the entire network [7].
Rather than modelling each node in detail, they just record how
many nodes have a safe time slot, how many are colliding,
and how many are backed-off for each number of frames. The
model evolves in steps of one time frame, and so they do
not model details such as messages being passed. Essentially,
they aggregate the behaviour over all the time steps in the time
frame into a single transition.

A limitation of this model is that since they rely on combina-
torial arguments, they only consider clique topologies (where
every node is within range of every other node). This gives a
much more scalable model than more detailed approaches, but
it strays somewhat from the intent of the protocol, where nodes
have a limited communication range. Moreover, while they can
consider in the order of 100 nodes, this also assumes that there
are enough time slots (i.e. at least 100), whereas the LMAC
specification suggests 32 time slots for practical purposes.
If we put aside these concerns, however, we still have an
important question to ask — is their model correct? Since
many important details of the system have been abstracted
away, it is difficult to be certain that no modelling artifacts
were introduced.

This case study provides one of the main motivations of this
paper — to automate the process of abstracting our detailed

Fig. 2. Observable and hidden transitions in a DTMC

model so that it has the same state space as that of [7],
enabling us to compare the two models, and detect modelling
artifacts in the latter. We will now describe our approach.

III. TEMPORAL ABSTRACTION

In a DTMC, there is no notion of time. This means that there
is no in-built way of modelling the duration of a transition. One
common interpretation of a DTMC is to say that all transitions
have the same duration, and this duration is deterministic.
However, we may wish to build a more refined notion of time
into the model — for example, that duration is a property
only of certain observable events in the model, rather than a
property of every transition.

This idea is illustrated in Figure 2. A DTMC does not tell us
anything about when transitions take place; just the temporal
order in which they occur. If some transitions are hidden from
us, it does not make sense to talk about the time at which
they occur — only that they take place at some point between
two observable transitions. We can therefore talk about the
time between observable transitions (which may be governed
by some distribution), but not the duration of an individual
transition. To state this concept more precisely, we can separate
transitions into three types:

1) Observable transitions, which occur at a known point
in time — we can think of an observable transition as
fixing a global time for the entire model when it occurs.
For the LMAC case study we present in this paper, it
is useful to consider the time between two observable
transitions to be deterministic (i.e. the length of a time
slot), but we could choose other distributions, as we will
discuss in the conclusions.

2) Hidden transitions, which happen between observable
transitions, but at an uncertain point in time. These
correspond to events where we are uncertain about the
specific time at which they occur — except that they
occur temporally before the next observable transition.

3) Urgent transitions, which occur instantaneously, as
soon as they are enabled, with a higher priority than
any other type of transition. These correspond to events
that are not present in the real system, but are introduced
for modelling purposes — usually, to make the model
simpler or easier to describe.

An intuition for the distinction between observable and hid-
den/urgent transitions comes from synchronous digital elec-
tronics, where we only look at the voltages on output wires

Fig. 3. An illustration of temporal abstraction

after a certain delay (the clock period) has passed. This is
because we do not know how long the internal events take
to happen (the propagation delays), as is the case with the
models we are considering.

Note that there is some similarity here between the van-
ishing and tangible states of generalised stochastic Petri nets
(GSPNs) [14], which roughly correspond to states with only
urgent transitions or observable transitions respectively. The
main difference is that there is no distinction between transi-
tions that take no time (are urgent) and those that take some
time, but we do not know their duration (are hidden).

When we divide the transitions in the model into the above
types, it becomes clear that it only makes sense to observe the
state of the system immediately after an observable transition
takes place. Otherwise, if we make an observation at a different
point in time, we cannot know how many hidden transitions
have taken place. Between observable transitions, the state of
the system is uncertain, and so it makes sense to abstract
away from this by collapsing all the transitions between two
observable transitions.

This idea is illustrated in Figure 3. Starting from the
initial state, we compute the probability of reaching a state
by performing a sequence of hidden or urgent transitions,
followed by a single observable transition, and then as many
urgent transitions as we are able to perform. We end up in a
stable state corresponding to the next observable state of the
system. By repeating this process, we can construct a temporal
abstraction of the model.

Let us now formally describe how to identify these three
types of transition, and how to compute the transition proba-
bilities in the time-abstracted model. We will describe this in
terms of labelled DTMCs, using the action labels to identify
the transition types. Consider a labelled DTMC (S,Act ,P , ι).
We can describe the actions as the union of three disjoint sets
(where we require Obs to be non-empty):

Act = Obs ∪Hid ∪Urg

Let us now define what we mean by a stable state s′, given that
we start in a state s. The intuition is that there is a path from
s to s′ such that (1) precisely one transition is observable, (2)
all the transitions before it are either hidden or urgent, (3) all
the transitions after it are urgent, and (4) there are no urgent

transitions out of s′. Defining this formally:

Stab(s, s′) iff ∃s0, s1, . . . , sn. s0 = s ∧ sn = s′ ∧
(1) ∃0 ≤ i < n. Tran(si,Obs, si+1) ∧
(2) ∀0 ≤ j < i. Tran(sj ,Hid ∪Urg , sj+1) ∧
(3) ∀i < k < n. Tran(sk,Urg , sk+1) ∧
(4) ∀a ∈ Urg , s′′ ∈ S. P (s′)(a)(s′′) = 0

where Tran(s1, A, s2) is defined as:

Tran(s1, A, s2) iff ∃a ∈ A. P (s1)(a)(s2) > 0

We can then construct a temporal abstraction M] =
(S],P], ι), where S] = { s | Stab∗(ι, s) }, for the reflexive
and transitive closure Stab∗ of Stab (the set of all stable states
that are reachable from the initial state). P] is defined as:

P](s)(s′) =

{
PrM [s]

s (♦♦♦as′) if Stab(s, s′)
0 otherwise

where as′(x) evaluates to true iff x = s′, and the reachability
probabilities are computed over the modified DTMC M [s] =
(S,Act ,P [s], ι), with P [s] defined as:

P [s](s1)(a)(s2) =
{ 1

|Act|1s1=s2 if Stab(s, s1)
P (s1)(a)(s2) otherwise

This makes all the stable states that follow s absorbing, allow-
ing P] to be computed in terms of reachability probabilities.

We still have to be a little careful in computing P], however,
since it might be possible to never reaching a stable state after
leaving a state s. This would mean that P](s) defines a sub-
probability distribution over S], and therefore M] is not a
DTMC. We could fix by adding an additional state to S],
and re-directing the remaining probability mass there. Usually,
however, this scenario just means that there is a mistake in the
model, since it implies that the system enters a state where it
can never be observed again.

Note that we throw away the labels in the temporal abstrac-
tion, and so it yields an (unlabelled) DTMC. If we want to
keep the labels in Obs then this is straightforward to do, but
since we do not need them in this paper, the above is simpler.

The temporal abstraction we produce ensures that all tran-
sitions in the new DTMC correspond to an observable event.
This does not necessarily guarantee a reduction in the size
of the state space, but it can do for models with a particular
structure. For example, if all components in the model syn-
chronise over observable transitions, and no other transitions
can take place if an observable one is enabled (at the system
level), then we can be sure to achieve a reduction in the size
of the state space. This is the case in our model of the LMAC
protocol, if we view the tick transitions as the observable
ones. Specifically, we can classify the transitions in Figure 1
as follows:

1) The observable transitions are the time-passing transi-
tions (with dashed arrows). These correspond to time
globally passing (i.e. the clock ticking), and so these are
the only points when we can be sure that the network
is in a stable, observable state.

2) The urgent transitions are the internal transitions out
of the states SCAN LOOP, CHOOSE SLOT, CHOOSE SLOT′

and CHOOSE DELAY (with dotted arrows). These should
take place as soon as possible, since they are are only
present to make the model description more compact.

3) The hidden transitions are the message passing tran-
sitions (with solid arrows), and the remaining internal
transitions (with dotted arrows). These happen at some
point within the time frame, but we do not know when,
or in what order (for example, the precise order of
messages may depend on many factors, and is not
something we want to observe).

A. Controlling the Temporal Granularity by Sampling

Whilst the idea of a temporal abstraction is useful in
restricting our view of the system to observable events, we
may also want to take things one step further. Rather than
viewing every observable event that takes place in the model,
we might only want to sample these observations at a certain
frequency. This makes a lot of sense in the LMAC protocol,
when there are two levels of time granularity: time slots, and
time frames. The detailed model describes how the system
evolves over a time slot, but in the high-level model of [7]
we look at how the entire network evolves over an entire time
frame. To this end, we would like to abstract away from the
detail of which time slots messages are sent in.

Luckily, it is very straightforward to change the temporal
granularity of our abstracted model, given that we only look
at its state every t events. Given a temporal abstraction M =
(S, P , ι), we can compute the t-step sampling as:

Mt = (S, P t, ι)

For our LMAC model, t is simply the number of time slots
in a time frame.

In practice, we do not want to compute this matrix power
directly, but we can instead take advantage of P being a sparse
matrix (as is usually the case when we build a compositional
model in a language such as PRISM). If we only compute the
transitions for the reachable states, then we can exploit the
fact that the size of S is reduced. Note however that this size
reduction only happens if the sampling periodicity matches
a periodicity in the behaviour of the model — intuitively,
allowing us to always skip over certain states in the model.

An important feature of both the temporal abstraction and
the sampling is that we can perform it on-the-fly whilst we
explore the state space of the detailed model. The size of the
state space reduction can be seen in Table I, which we will
discuss in more detail in Section V.

B. Behavioural Equivalences and Temporal Abstraction

The idea that we have presented in this section very much
relates to ideas of behavioural equivalence, in the sense that
our temporal abstraction is trace equivalent to the original
model, if we collapse traces in the original model so that they
only contain the observable states.

Let us formalise this statement more precisely. It is standard
to define a probability space over the cylinder sets of a
DTMC [3]. Namely, for a DTMC M = (S, P , ι), and a finite
path σ = ι, s1, . . . , sn, we define:

Cyl(σ) = {σ′ ∈ Paths(M) | σ is a prefix of σ′ }

We can define a probability measure over the σ-algebra of
all cylinder sets of M , such that PrM (Cyl(ι, s1, . . . , sn)) =
P (ι, s1) · · ·P (sn−1, sn).

To allow us to compare paths in two different DTMCs, let
us define a projection function over paths. Given a subset S]

of a state space S, we define ρS] over finite paths in S:

ρS](ε) = ε ρS](s, σ) =
{

s, ρS](σ) if s ∈ S]

ρS](σ) otherwise

The correctness of our temporal abstraction is then expressed
by the following theorem:

Theorem 4. Let M = (S,Act ,P , ι) be a labelled DTMC, and
M] = (S],P], ι) the temporal abstraction of M with respect
to Act = Obs ∪Hid ∪Urg . If M ′ is the (unlabelled) DTMC
induced by M , then for all finite paths σ] ∈ Paths(M]):

PrM]

(Cyl(σ])) = PrM ′
(∪{Cyl(σ) | ρS](σ) = σ] })

Proof: We rely on the correct computation of the reach-
ability probabilities PrM [s]

s (♦♦♦as′). For σ] = ι, s]
1, . . . , s

]
n:

PrM]

(Cyl(σ])) = P](ι, s]
1) · · ·P](sn−1, sn)

= PrM [ι]

ι (♦♦♦as]
1
) · · ·PrM

[s]
n−1]

s]
n−1

(♦♦♦as]
n
)

But for any path σ′ such that ρS](σ′) = σ], and for all pairs
of states s]

i and s]
i+1, there are no states s between these in

σ′ such that Stab(s]
i , s). The above therefore corresponds to:

PrM ′
({σ | ∃ prefix σ′ of σ. ρS](σ′) = σ] })

= PrM ′
(∪{Cyl(σ) | ρS](σ) = σ] })

It is known that both strong and weak probabilistic bisim-
ulation are stronger than trace equivalence [2], and in fact
these are too strong for our purposes. In particular, PCTL
properties are clearly not preserved by our abstraction, since
they can ‘view’ the hidden states, and not just the observable
ones. It is reasonable to suggest, however, that we could
characterise our abstraction using a form of probabilistic
testing equivalence [5] — in particular, if we restrict the tests
so that they only concern observable states and transitions.

IV. SPATIAL ABSTRACTION

We have now seen how to perform a temporal abstraction
of a DTMC model such that only the transitions we want
to observe are present in the abstract model. Furthermore,
by sampling the model at different rates, we can adjust the
temporal granularity of our abstraction. If we want to compare
our model with a higher-level model of the same system,
however, this temporal abstraction only takes us part of the

way in itself — our model still contains a lot of detail about
the state of each of the components that may be ignored in
the high-level model.

In general, we want to extract certain properties of the states
of our detailed model, and only record these in the states of
the abstract model. For example, turning to our LMAC case
study, we might want to record just the number of nodes
that are colliding, rather than the specific time slot owned
by each node in the network. In this section, we describe a
spatial abstraction of models, which allows us to project onto
such higher-level state spaces, with the trade-off that we may
introduce additional non-determinism into the model.

Over the years, a number of techniques have been developed
that allow us to do just this — for example, abstracting to
Interval Markov Chains [8], [13], or MDPs [6]. We take the
latter approach in this section, projecting a DTMC onto a
smaller state space and thus constructing an MDP.

To perform a spatial abstraction on a DTMC M = (S, P , ι),
where S ⊆ V1 × · · · × Vn, we first define an abstract state
space S] = V]

1 × · · · × V]
m. We do so by means of extraction

functions η1, . . . , ηm of the form:

ηi : V1 × · · · × Vn → V]
i

Typically, we can express each ηi in a compact form — for
example, defining an abstract variable as the sum of the values
of a number of the concrete variables. We define the extraction
of a concrete state s ∈ S as:

η(s) = (η1(s), . . . , ηm(s))

The idea is that the abstract state provides a summary of the
information in the concrete state. Often this corresponds to
recording just the number of components in a given state,
rather than the actual state of each individual component,
hence we call this a counting abstraction.

Given a DTMC M = (S, P , ι) and an extraction (S], η),
we can define an MDP M] = (S],P], η(ι)) as:

P](s]) = { η(P (s)) | η(s) = s] }

where we define an extraction of a distribution η(π) as:

η(π)(s]) =
∑

s|η(s)=s]

π(s)

Note that this definition of an MDP differs from that given
in Definition 2 in that there are no actions. We write
(S],P], η(ι)), where P] : S] → P(S] → [0, 1]), as a
shorthand for (S], { τ },P ′], η(ι)), where P ′] : S] → { τ } →
P(S] → [0, 1]) — P ′](s])(τ) = P](s]). A further point is
that there may be states in s] ∈ S] that are unreachable from
the initial state η(ι), and so we will typically only construct
the reachable subset of S].

As an example of a spatial abstraction, consider our LMAC
model. In the high-level model of [7], they define the state
space in terms of just five variables: the number of nodes with
a safe time slot (num safe), the number in the scanning mode
(num scan), and the number that have backed off for 1 ≤

k ≤ 3 time frames (num boff k). We can define an extraction
function for each of these, by expressing their value as an
expression of the variables in the detailed model.

The variables num scan and num boff k are straightfor-
ward to define for a model with N nodes, where we use the
notation vi to refer to variable v in the module for node i:

num scan =
N−1∑
i=0

1[statei = SCAN]

num boff k =
N−1∑
i=0

1[statei = WAIT ∧ counter i = k]

where we write the indicator value 1c as 1[c] for readability.
The variable num safe is a little trickier to define, since it

depends on the topology of the network. A node has a safe
time slot if it is in the normal mode, and none of its neighbours
or its neighbours neighbours are also in normal mode with
ownership of the same time slot. Given an edge relation E
describing the connectivity of the nodes:

num safe =
N−1∑
i=0

1[statei = NORMAL ∧ ¬∃j 6= i.

((i, j) ∈ E ∨ ∃k. { (i, k), (k, j) } ⊆ E) ∧
slot i = slotj ∧ statej = NORMAL]

Notice that we can infer the number of nodes that have a
colliding time slot from these variables:

num coll = N − num safe − num scan −
3∑

k=1

num boff k

An important feature of the spatial abstraction is that, like
the temporal abstraction, we can construct it on-the-fly as
we explore the state space of the detailed model. Intuitively,
we can construct the MDP as we go along by adding one
probability distribution to a state at a time — introducing a
new non-deterministic choice in the MDP whenever we add a
distribution to a state that does not coincide with any existing
possibility. By doing this on-the-fly we can avoid storing the
transitions in the original and temporally-abstracted models,
which leads to a large reduction in memory consumption.

V. LMAC: A CASE STUDY

To apply our abstraction methodology, we have developed a
tool, written in OCaml, which takes a PRISM model as input,
along with a definition of which transitions are observable,
hidden and urgent, and an abstraction file that specifies the
variables in the high-level model, as expressions of the original
variables. The output is an MDP (the temporally and spatially
abstracted model) in a format readable by PRISM, so that we
can use its model-checking engine to verify properties of it.

Table I shows the time and memory usage of our tool for
various instantiations of the LMAC model. This was run on
a MacBook with a 2.13 GHz Intel Core 2 Duo processor,
and 4 GB of RAM. As can be seen, we can handle models
with up to 109 states on this architecture. Note that on the
same architecture, PRISM was only able to build the state

Fig. 4. Non-determinism in the abstracted LMAC model

space for models with 4 nodes (i.e. up to around 100,000
states), even after reordering the variables in the model. We
suspect that because the models are complicated (even the
clique topology for 4 nodes has 53 variables and 349 com-
mands), the symbolic MTBDD representation used by PRISM
is inefficient and incurs a lot of overhead. We discovered
a remarkable improvement by implementing an explicit bit-
vector representation in our tool.

The reason why we can keep the memory consumption so
low is that we compute the abstraction on-the-fly. This means
that we do not store every state we explore — only the ones
after the temporal abstraction. Further to this, we can also
construct the transitions in the spatial abstraction on-the-fly,
so we do not need to store the transitions in the temporal
abstraction. This means that we only need a single hash table
to record the states that we have visited while constructing the
temporal abstraction, which allows us to abstract very large
models. It should be noted that the largest models of LMAC
that the authors of [9] were able to analyse contained just five
nodes, and these were qualitative models (in UPPAAL). We
are able to analyse quantitative models of networks with six
nodes, and even seven nodes under certain topologies, hence
our abstraction enables us to out-perform existing techniques.

A. Investigation of Modelling Artifacts

If we look at the MDPs our tool produces from the detailed
LMAC models, we can directly compare the output to the
high-level model of [7]. Complete agreement would mean that
the MDP we produce has only one choice in every state (i.e.
there is no non-determinism), and that the two DTMCs are
isomorphic. If this were the case, we could argue that the
high-level model is free of modelling artifacts, and accurately
describes the behaviour of the protocol. This is not quite the
case, however, as we shall now discuss.

We were able to find schedulers for the MDPs we produce
from clique topologies that agree with the models in [7] (note
that we cannot compare the tree topologies, since these are not
considered in [7]). This validates the combinatorial arguments
that they use in their model. However, we found that our
abstractions contain non-determinism, which means that the
models do not entirely agree. This arises because the abstract
model does not have enough information to know how long
it takes for a node to be informed that it is in a collision.

Topology Nodes Slots Variables/ States States After States After Time (s) Memory (MB)Commands Explored Temporal Abstraction Spatial Abstraction

Clique
4 4 53/349 37,055 829 39 1 15
5 5 76/611 1,794,265 22,657 86 62 19
6 6 103/979 156,361,383 980,766 174 7,759 351

Tree
7 6 120/521 79,048,156 609,423 101 4,300 322
7 7 134/569 230,930,452 1,352,224 101 13,086 686
7 8 148/617 579,819,743 2,716,577 101 31,992 1500

TABLE I
RESULTS FOR ABSTRACTION OF DIFFERENT LMAC TOPOLOGIES

Figure 4 shows two scenarios for a clique topology with
three nodes and three time slots. In the first scenario, nodes
A and B own time slot 2, and node C owns time slot 3. A
and B collide in time slot 2, and this is detected by node C,
who informs A and B in time slot 3, allowing the nodes to
immediately enter the back-off mode. Hence, at the end of the
first time frame, we observe A and B in the back-off mode.

In the second scenario, node C owns time slot 1. This
means that when C sends its message, it has not observed
the collision, since it has not yet happened. This means that
A and B must wait until the next time frame to be notified
of their collision, and at the end of the first time frame, we
observe A and B in the normal mode, but colliding.

This leads to non-determinism in the abstract model because
we throw away information about which node owns which
time slot — hence, both scenarios can be possible in the same
abstract state. In [7], they assume that it always takes one
time frame for a node to be notified of a collision (i.e. the
second scenario), hence they over-approximate this aspect of
the model. Since they did not consider such details when
working at a high level of abstraction, they inadvertently
introduced a modelling artifact into their model.

Rather than just examining the models that our abstraction
produces, it is more interesting to analyse some properties
of them. One property of particular interest for LMAC is
the number of time frames that it takes for the network to
stabilise — in other words, for all N nodes to own a safe
time slot. We can express the cumulative probability up to
time frame T as the following reachability property, where ι]

is the start state of the abstract model:

Prι](♦♦♦≤T num safe = N)

Figures 5 and 6 show the results of using PRISM on the MDP
that our tool produces, to model check this property (for T
ranging from 0 to 20) for the clique topologies with 4 and
5 nodes respectively. The upper and lower bounds are very
close when we have 4 nodes, yet the lower bound becomes
significantly worse when we move to 5 nodes — in fact, it
gets worse the more nodes we add!

The reason for this only becomes clear when we take a
careful look at the behaviour of the model. When there are 4
nodes in the network, it is only ever possible to have a collision
in one time slot — the gateway node never collides, and so
a collision is due to either all three remaining nodes colliding

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	

Cu
m
ul
a2

ve
	 P
ro
ba
bi
lit
y	
of
	 S
ta
bi
lis
a2

on
	

Time	 Frame	 T	

Fig. 5. Upper and lower bounds for the time to stabilise for a 4 node clique

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	

Cu
m
ul
a2

ve
	 P
ro
ba
bi
lit
y	
of
	 S
ta
bi
lis
a2

on
	

Time	 Frame	 T	

Fig. 6. Upper and lower bounds for the time to stabilise for a 5 node clique

in the same time slot, or just two of them colliding. When we
move to 5 nodes, it becomes possible for two collisions in two
different time slots to occur, and this makes a big difference!

If two such collisions occur, the two sets of nodes responsi-
ble can be notified of this in different time slots, and therefore
back-off at different times. This means that it is possible to
have two nodes in the scanning mode at the same time, but
offset by one time slot. Consider a scenario with just two time
slots available. The first node might enter the normal mode
during the last time slot in a frame, choosing one of the slots.
At the end of the frame, we do not observe any collisions.
However, in the next time slot (which is in the next frame)
the second node chooses its slot — still thinking that there are
two available, because the first node has yet to send anything!

In such a scenario, we have a collision probability of 50%,

but in the abstract model we cannot distinguish between this
and the more common scenario when the node has correct
information, and a 0% chance of colliding. This explains why
the lower bound gets worse — we always have to consider the
worst-case scenario where the collision probability is higher.
This is another example of a modelling artifact, which suggests
that the high-level model of [7] should be enriched with some
additional details to distinguish these situations. Note that we
see similar results regarding the lower bound for the tree
topologies, but with a faster time to stabilise in the best case.

It is important to understand that the non-determinism
introduced by the spatial abstraction, leading to the uncertainty
in the above examples, is not a modelling artifact. The
abstraction is correct with respect to the behaviour of the
detailed model, and so the uncertainty simply indicates that
the particular choice of spatial abstraction was not a good
one. In other words, the high-level model has not taken into
account some situations that occur in the detailed model. Using
this knowledge, we can improve the high-level model, and
therefore control the modelling artifacts within it.

VI. CONCLUSIONS

In this paper, we have described a novel methodology that
allows us to take a detailed model of a system, and abstract
it both temporally and spatially to build a higher-level mode.
By comparing this with high-level models that are constructed
by other means (e.g. in [7]), we can identify modelling
artifacts that were introduced due to incorrect assumptions.
We have illustrated our approach with a case study of the
LMAC protocol for wireless sensor networks, showing that
our methodology is both successful at identifying modelling
artifacts, and in allowing us to analyse much larger models
than are possible without abstraction.

There is a great deal of scope for future work, based on
the ideas we have presented. From a practical side, we could
look to scale our tool further by distributed computation, and
investigate the possibility of computing some of the abstraction
steps compositionally. There are also important similarities
with the idea of on-the-fly model checking [4], since we con-
struct our abstraction on-the-fly. More importantly, however,
our methodology automates the building of high-level models
from detailed ones, and so to use this to improve the high-
level models we build, we need techniques for generalising
the results we observe for small systems to much larger ones.

The methodology we described in this paper was limited
to discrete-time models, but there are some straightforward
extensions we can apply to move to continuous time. If
the time between two observable transitions is distributed
according to a random variable X ∼ Exp(λ), for some rate λ,
then it is straightforward to construct a continuous time MDP
(a CTMDP) as an abstraction of the model.

In doing this, the only place to be careful is when we adjust
the temporal granularity — if we sample every t transitions,
then the duration of a transition in the abstract model is Erlang-
distributed: Xt ∼ Γ(t, λ). To construct a CTMDP, this means
that we have to replace each state in the abstract model with a

sequence of t states. But since the abstract models are typically
very small, as is t, this should not present much difficulty in
terms of the model size. Note that this yields a uniformised
CTMDP (with rate parameter λ), for which efficient model-
checking algorithms exist.

In summary, we have demonstrated through a methodical
application of abstraction steps that it is possible to control
modelling artifacts when we move to higher levels of abstrac-
tion. We can never eliminate them entirely, but if we better
understand how modelling artifacts arise, we can improve our
models and be more confident in the predictions they give.

ACKNOWLEDGEMENTS

This work was supported by MT-LAB, a VKR Centre of
Excellence, and by the Danish Research Council (FTP grant
09-073796).

REFERENCES

[1] The PRISM language — semantics. www.prismmodelchecker.org/doc/
semantics.pdf.

[2] C. Baier and H. Hermanns. Weak bisimulation for fully probabilistic
processes. In 9th International Conference on Computer Aided Verifi-
cation, volume 1254 of LNCS, pages 119–130. Springer, 1997.

[3] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press,
2008.

[4] I. Beer, S. Ben-David, and A. Landver. On-the-fly model checking of
RCTL formulas. In 10th International Conference on Computer Aided
Verification, volume 1427 of LNCS, pages 184–194. Springer, 1998.

[5] I. Christoff. Testing equivalences and fully abstract models for proba-
bilistic processes. In CONCUR ’90 Theories of Concurrency: Unification
and Extension, volume 458 of LNCS, pages 126–138. Springer, 1990.

[6] P. D’Argenio, B. Jeannet, H. Jensen, and K. Larsen. Reduction and
refinement strategies for probabilistic analysis. In Process Algebra and
Probabilistic Methods: Performance Modeling and Verification, volume
2399 of LNCS, pages 335–372. Springer, 2002.

[7] L.J.R. Esparza, K. Zeng, and B.F. Nielsen. A probabilistic model of
the LMAC protocol for concurrent wireless sensor networks. In The
11th International Conference on Application of Concurrency to System
Design (ACSD), 2011.

[8] H. Fecher, M. Leucker, and V. Wolf. Don’t know in probabilistic
systems. In SPIN’06, volume 3925 of LNCS, pages 71–88, 2006.

[9] A. Fehnker, L. van Hoesel, and A. Mader. Modelling and verification of
the LMAC protocol for wireless sensor networks. In 6th International
Conference on Integrated Formal Methods (IFM 2007), volume 4591 of
LNCS, pages 253–272. Springer, 2007.

[10] H. Hansson and B. Jonsson. A framework for reasoning about time
and reliability. Proceedings of the Real Time Systems Symposium, pages
102–111, Dec 1989.

[11] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool
for automatic verification of probabilistic systems. In 12th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, volume 3920 of LNCS, pages 441–444. Springer, 2006.

[12] H.E. Jensen. Model checking probabilistic real time systems. In 7th
Nordic Workshop on Programming Theory, pages 247–261, 1996.

[13] B. Jonsson and K.G. Larsen. Specification and refinement of prob-
abilistic processes. In LICS ’91: Proceedings of Sixth Annual IEEE
Symposium on Logic in Computer Science, pages 266–277, 1991.

[14] M.A. Marsan, G. Conte, and G. Balbo. A class of generalized stochastic
Petri nets for the performance evaluation of multiprocessor systems.
ACM Transactions on Computer Systems, 2(2):93–122, 1984.

[15] L.F.W. van Hoesel and P.J.M. Havinga. A lightweight medium access
protocol (LMAC) for wireless sensor networks: Reducing preamble
transmissions and transceiver state switches. In 1st International
Workshop on Networked Sensing Systems (INSS 2004), pages 205–208.
Society of Instrument and Control Engineers (SICE), 2004.

[16] M.S. Vighio and A.P. Ravn. Analysis of collisions in wireless sensor
networks. In 21st Nordic Workshop on Programming Theory, 2009.

